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Electrodermal activity (EDA) is a direct readout of the body’s sym-
pathetic nervous system measured as sweat-induced changes in
the skin’s electrical conductance. There is growing interest in using
EDA to track physiological conditions such as stress levels, sleep
quality, and emotional states. Standardized EDA data analysis
methods are readily available. However, none considers an estab-
lished physiological feature of EDA. The sympathetically mediated
pulsatile changes in skin sweat measured as EDA resemble an
integrate-and-fire process. An integrate-and-fire process modeled
as a Gaussian random walk with drift diffusion yields an inverse
Gaussian model as the interpulse interval distribution. Therefore,
we chose an inverse Gaussian model as our principal probability
model to characterize EDA interpulse interval distributions. To an-
alyze deviations from the inverse Gaussian model, we considered
a broader model set: the generalized inverse Gaussian distribu-
tion, which includes the inverse Gaussian and other diffusion
and nondiffusion models; the lognormal distribution which has
heavier tails (lower settling rates) than the inverse Gaussian; and
the gamma and exponential probability distributions which have
lighter tails (higher settling rates) than the inverse Gaussian. To
assess the validity of these probability models we recorded and
analyzed EDA measurements in 11 healthy volunteers during
1 h of quiet wakefulness. Each of the 11 time series was accu-
rately described by an inverse Gaussian model measured by
Kolmogorov–Smirnov measures. Our broader model set offered
a useful framework to enhance further statistical descriptions of
EDA. Our findings establish that a physiologically based inverse
Gaussian probability model provides a parsimonious and accurate
description of EDA.

electrodermal activity | point processes | statistics | autonomic nervous
system | signal processing

Electrodermal activity (EDA), which measures the electrical
properties of the skin as changes in conductance, is mediated

almost exclusively by the sympathetic branch of the autonomic
nervous system (1). The skin continuously receives sympathetic
innervation. Consequently, EDA is continuously present due to
sweat glands filling and releasing sweat onto the skin. Changes in
the level of filling occur in response to internal stimuli (physio-
logical and psychological) and external stimuli such as threats or
dramatic changes in ambient temperature. EDA is a component
of the primal flight-or-fight response that is routinely used as a
measure of the sympathetic nervous system activity in psycholog-
ical studies, polygraph tests and studies of stress (1). Measures
of EDA are now being developed as a neuromarketing tool to
evaluate consumer responses to different products or promotions
(2). For this reason, there is growing interest in the development
of analysis methods to characterize EDA accurately.
EDA has a characteristic pattern consisting of two distinct

components. There is a baseline or tonic component that drifts
gradually with time. On top of the tonic component is a phasic
component composed of pulse events that vary in amplitude,
shape, and spacing. Sweat release is a pulsatile process because a

sufficient volume of sweat has to accumulate, fill the glands, and
be released onto the skin to observe an EDA change. This
integrate-and-fire nature of the phasic component is believed
to represent fast changes in sympathetic nervous system activ-
ity. EDA activity can show large variation in both baseline ac-
tivity and pulse activity within and between individuals.
Most current EDA analysis methods focus mainly on the phasic

component to characterize sympathetic activity. These methods fall
in two categories: rate-based methods and deconvolution methods.
The rate-based methods specify a time window and estimate a
moving average of the number of pulse events per time window
(3–5). For the deconvolution methods, a single pulse shape is as-
sumed, and the EDA signal is represented as the convolution of
this pulse shape with neural inputs. For this technique, the neural
input is deconvolved from the EDA while simultaneously fitting
pulse shape parameters (6–10). Hence, deconvolution methods
report the occurrence times and amplitudes of the pulse events.
Although widely used, neither the rate-based nor the deconvolu-
tion methods are based on EDA’s well-established physiology.
Likewise formal statistical modeling is not used to characterize the
interpulse interval dynamics (pulse rate and pulse times) or the
pulse amplitudes.
The important advance that we report here is the application

of elementary point process models based on physiology to
characterize the dynamics of EDA interpulse intervals. These
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parsimonious probability models provide a physiologically based
framework for statistical analysis of EDA. The balance of this
paper is organized as follows. In Physiology and Theory, we for-
mulate generalized inverse Gaussian integrate-and-fire proba-
bility models derived from EDA’s integrate-and-fire properties
and, as alternatives, lognormal, exponential, gamma, and gen-
eralized inverse Gaussian non-integrate-and-fire probability
models. In Application and Results, we use these models in the
analysis of EDA recorded from 11 healthy subjects during quiet
wakefulness. The Discussion describes the implications of our
findings for future basic science and translational studies.

Physiology and Theory
The Anatomy and Physiology of Electrodermal Activity. To develop
our statistical models of EDA activity we review the anatomy and
physiology of sweat production in the skin (1). Each sweat gland
consists of three parts: the dermal gland, the duct that connects
the gland to the skin surface, and the pore where the duct opens
to the skin (Fig. 1A; 1). The dermal portion of the gland is in-
nervated by sudomotor nerves, a part of the peripheral nervous
system that is predominantly under sympathetic control (1).
Sweat is produced in the gland by sympathetically induced
abrupt increases in spiking activity (action potentials) in the
sudomotor nerves. These electrical events are called sudomotor
bursts. Sweat produced in response to these bursts accumulates
in the duct. Once the duct is full, it pushes open the pore and
spills onto the skin. The sweat either evaporates or is reabsorbed
through the walls of the duct. With the duct now empty, the
accumulation process begins again (1, 11, 12).
Sweat on the skin’s surface increases its electrical conductance

(inverse of resistance) because its salt content facilitates the
propagation of electrical currents. Electrical conductance across
the skin can be measured in a standard fashion by placing two
electrodes on either the palm or fingers, applying a constant
voltage, and measuring the current (1). The pulsatile effects of

the sudomotor bursts measured at the skin are termed galvanic
skin responses (GSRs). The second-to-second changes in skin
sweating measured as second-to-second changes in skin con-
ductance are termed EDA (1).
EDA measurements have two distinct components: tonic ac-

tivity and phasic activity. Tonic activity represents generally on-
going EDA that reflects the background state of the EDA. The
phasic activity reflects primarily the GSR or pulsatile events.

Statistical Models of EDA Pulses. We investigate four statistical
models to characterize the times between GSR events recorded
during EDA measurements: generalized inverse Gaussian, log-
normal, gamma, and exponential. The choice of the generalized
inverse Gaussian model follows directly from the physiology
described previously. The phasic component of the EDA mea-
surements is comprised of pulsatile events. The times between
these pulse events are governed by sympathetic stimulation of
the glands, the sweat production and its accumulation in the
glands, sweat release on the skin, and sweat reabsorption and
evaporation. We represent this four-step sequence of sweat ac-
cumulation in the gland and its release onto the skin as an
integrate-and-fire process defined by a Gaussian random walk
with drift diffusion (Fig. 1B). It is well known that the times
between firing events for this elementary diffusion process obey
an inverse Gaussian probability model (13–15). Therefore, we
chose as the first model the generalized form of the inverse
Gaussian probability density defined for an interpulse interval
time x> 0 as

f x|ψ , χ, λ( ) = ψ=χ( )λ=2
2Kλ( ψχ( )1=2)x

λ−1 exp −1
2

ψx + χ

x
( )[ ], [1]

where −∞< λ<∞, ψ ≥ 0, χ ≥ 0, and Kλ is the modified Bessel
function of the third kind with index λ (16). The generalized

Fig. 1. A summary of our model, including both physiologic and empirical components and how they align. (A) An illustration of how sweat gland phys-
iology can be modeled as a Gaussian random walk with drift diffusion, which suggests that the times between first passage events (interpulse intervals)
should follow (B) an inverse Gaussian distribution (examples shown; for density, see SI Appendix, Eq. S1). Sweat gland image credit: mikrostoker © 123RF.com.
(C) Extracted GSR events (marked by red asterisks) from EDA data, and (D) a histogram of interpulse interval data, to which we fit generalized inverse
Gaussian (diffusion and nondiffusion), lognormal, gamma, and exponential probability models.
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inverse Gaussian is a flexible family of probability models that
includes the inverse Gaussian model as a special case λ = −1

2. For
λ≤ 0, the generalized inverse Gaussian probability density gives
diffusion (integrate-and-fire) models other than the inverse Gauss-
ian. For λ> 0, the generalized inverse Gaussian density gives
nondiffusion (non–integrate-and-fire) models. As χ→ 0, the gen-
eralized inverse Gaussian yields the special case of a gamma prob-
ability model with parameters λ> 0 and 2−1ψ ≥ 0. When λ = 1 as
χ→ 0, the generalized inverse Gaussian becomes the exponential
probability density (16). Hence, by fitting the generalized inverse
Gaussian model we can study systematically how well EDA inter-
pulse interval time series can be characterized by a broad class of
integrate-and-fire and non–integrate-and-fire models.
To broaden the class of alternatives to integrate-and-fire

models, we also consider the lognormal distribution. Its proba-
bility density function is defined as

f x|μ, σ( ) = 1

2πx2σ2( )1=2 exp − 1
2σ2

log x − μ( )2{ }, [2]

where −∞< μ<∞ and σ > 0. The lognormal has been widely
used as an empirical model to characterize interevent distribu-
tions in point process time series (16).
We postulate that under stable, or approximately stable,

background conditions the inverse Gaussian model will pro-
vide an accurate description of the inter-GSR (interpulse)
event times as the integrate-and-fire model is a plausible de-
scription of skin sweat production. This assumes that the group
activity of the sweat glands shows a coherent behavior. If there is
variation in the behavior of the individual glands, even when the
background state is stable, then it is possible that the elementary
inverse Gaussian model may not apply.
There may be a mixture of inverse Gaussian models which

could produce either longer or shorter interevent intervals rel-
ative to a single inverse Gaussian model. These differences could
be manifested by either heavier or lighter tails relative to an
inverse Gaussian model. To model heavy tail distributions, we
consider the lognormal and the gamma distributions, whereas to
model the light tail distributions, we consider the gamma and the
exponential distributions. The gamma is flexible in that it can
have either a heavier or a lighter tail than the inverse Gaussian
depending on the values of the parameters (17). Although the ex-
ponential distribution is a special case of the gamma, it represents
the null model of an underlying Poisson process governing GSR-
event production.

We quantify the tail behavior of a probability density f (x) by
evaluating the settling rate, which is defined as

SRf = lim
x→∞

f (x)
1 − F(x), [3]

where F(x) is the corresponding cumulative distribution function.
The settling rate is the limit of the hazard function as x tends to
infinity (17). By this definition, a distribution is commonly clas-
sified as light, medium, or heavy tailed based on whether the
settling rate is infinite, positive but finite, or zero, respectively.
The more slowly (rapidly) the tail of a distribution settles, the
heavier (lighter) the tail. We can divide our set of probability mod-
els into four medium-tailed (exponential, gamma, inverse Gaussian,
and generalized inverse Gaussian) and one heavy-tailed distribution
(lognormal). The four medium-tailed distributions are distinguished
relative to each other based on their parameter values, which de-
termine the respective settling rates (17, 18).

Application
Experimental Data. Our experimental protocol was approved by
the Massachusetts Institute of Technology Institutional Review
Board, and all subjects provided written informed consent. We
collected EDA data from 12 healthy volunteers (six men) be-
tween the ages of 22 and 34 while awake and at rest (19).
Electrodes were connected to the second most distal phalange of
the second and fourth digits of each subject’s nondominant hand.
Approximately 1 h of EDA data were collected at 256 Hz. Sub-
jects were seated upright and instructed to remain awake. They
were allowed to read, meditate, or watch something on a laptop or
tablet but not to use the instrumented hand. We assumed skin and
ambient temperature were constant for the duration of the ex-
periment. One subject’s data were not included in the analysis
because we learned, after the data collection, that this individual
occasionally experienced a Raynaud’s type phenomenon. This would
affect the quality of the EDA data. Data from the remaining 11
subjects were analyzed using MATLAB 2017a.

Data Preprocessing and EDA Pulse Selection. Preprocessing con-
sisted of two steps: 1) detecting and removing artifacts and 2)
isolating the phasic component. Artifact detection was done based
on the derivative of the time series since large rapid changes are
physiologically impossible for skin conductance. Artifact removal
was done in two parts, first correcting for artifact-related large
magnitude changes in the remainder of the signal and then inter-
polating the few seconds around the artifact itself. Then a low-pass

Table 1. Results: Fitted parameters for generalized inverse Gaussian diffusion models

Subject Number of pulses extracted

GIG diffusion models

Identifiable distribution?Lambda Chi Psi

S01 242 −0.5 9.2706 0.0427 Inverse Gaussian
S02 122 −0.5 18.3391 0.0238 Inverse Gaussian
S03 112 −0.5 18.6703 0.0178 Inverse Gaussian
S04 223 −0.5 16.8932 0.0655 Inverse Gaussian
S05 348 −0.5 11.0195 0.0973 Inverse Gaussian
S06 97 −0.5 11.7719 0.0075 Inverse Gaussian
S07 182 −0.5 27.1432 0.0645 Inverse Gaussian
S08 344 −0.5 15.8727 0.1450 Inverse Gaussian
S09 299 −0.5 10.2546 0.0701 Inverse Gaussian
S10 111 −0.5 42.7494 0.0369 Inverse Gaussian
S11 125 −0.5 21.4675 0.0240 Inverse Gaussian

For each subject, the parameters of the best fitted generalized inverse Gaussian diffusion model are shown. If
the model is identifiable as a known distribution based on the parameter values, that is indicated in the
rightmost column. GIG, generalized inverse Gaussian.
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FIR filter was used to estimate and remove the slow-moving tonic
component of the signals, thereby, isolating the phasic component.
The data preprocessing is described in further detail in Sub-
ramanian et al. (20).
Since there are underlying tonic fluctuations, absolute pulse

amplitude alone is insufficient to extract pulses reliably. There-
fore, we computed locally adjusted amplitudes for all detected
peaks using the MATLAB function findpeaks. The findpeaks
algorithm computes a prominence or relative amplitude for each
peak, by adjusting the amplitude of each peak as the height
above the highest of neighboring valleys on either side. The
valleys are chosen based on the lowest point in the signal be-
tween the peak and the next intersection with the signal of equal
height on either side. With this method, a peak with small ab-
solute amplitude can be rewarded in its prominence value if it is
in a region of data with low activity. We then used a threshold on
this prominence value to account for the varying baseline, in-
stead of on the absolute amplitude.
We used a prominence threshold of 0.005 to extract peaks

across all subjects, unless this resulted in too few or too many
pulses for each hour-long recording. This was primarily verified
by visual inspection of extracted pulses, as well as rough esti-
mates of 60 and 360 pulses as generous bounds for what should
be expected of 1 h of data at rest with little external stimulation.
This corresponds to one pulse every 10 to 60 s on average (4,
21–26). In the case that too few pulses were extracted, we
gradually reduced the prominence threshold by 0.001 until the
number of pulses exceeded 100 and no obvious pulses were
missed by visual inspection (verified by three different viewers
independently). In the case too many pulses were extracted, we
gradually increased the prominence threshold by 0.001 until the
number of pulses was fewer than 360 and the extracted pulses
were distinguishable from sensor noise by visual inspection
(verified by three different viewers independently). If changing
the threshold in increments of 0.001 resulted in drastic changes
in the number of pulses each time, we reduced the increment to
0.0005. Although not fully automated at this stage, the design of
this method to extract pulses attempted to take into account the
wide variation in baseline levels of EDA activity seen across
subjects. The extracted peaks included smaller peaks that other
methods would generally ignore as noise. However, we chose to
include them in the analysis.

Statistical Model Fitting and Comparison. First, we restricted the
parameter space to λ≤ 0 for the generalized inverse Gaussian
model to find the best integrate-and-fire model for each data
series. To allow for statistical improvements by capturing devi-
ations from the integrate-and-fire models, we fit four other
probabilities models to each data series: generalized inverse

Gaussian non–integrate-and-fire (λ> 0), lognormal, gamma, and
exponential models. We fit all models by maximum likelihood
(27, 28). We assessed goodness-of-fit by using KS plots and by
computing Akaike’s information criterion (AIC), defined as

AIC = -2 log f θ̂ML( ) + 2p, [4]

where f (θ̂ML) is the likelihood evaluated at the maximum likeli-
hood parameter estimates and p is the number of parameters. A
lower AIC indicates a better fit.
A KS plot compares the rescaled quantiles from the fit of the

estimated probability model with the quantiles of an exponential
distribution with rate 1 using the time-rescaling theorem (29).
This theorem states that any point process can be rescaled to an
exponential distribution with rate 1 using its conditional intensity
(hazard) function. The KS distance computes the maximum dis-
tance between the quantiles of the rescaled data and the uniform
distribution, which is a simple transform of an exponential distri-
bution with rate 1. A smaller KS distance indicates that the model
is more similar to the structure observed in the data. We com-
puted 95% confidence intervals (5% significance cutoffs) for the
KS plot and compared the KS distances across models (30). A KS
distance that is within (outside) the 95% confidence intervals
suggests that the model offers (fails to offer) a reasonably accurate
description of the data.
We also compared the models using a tail behavior analysis, in

which the settling rates of the models were compared to deter-
mine the heaviness of the tails of the distributions. We hypoth-
esized that each EDA interpulse interval distribution results
from the activity of multiple sweat glands. This could lead to
deviations from the inverse Gaussian with slightly heavier or
lighter tails. These deviations can be captured statistically by
right-skewed models such as the lognormal, generalized inverse
Gaussian and gamma that together allow for more flexibility in
tail behavior.

Results
Extraction of EDA Pulses. Fig. 1C shows an example of an excerpt
of extracted pulses for Subject S07. This includes pulses large
enough to be used in most analyses as well as those that are
much smaller and usually either smoothed out or ignored as
noise. We included both types of pulses for all subjects and did
not distinguish between them. The majority of subjects showed
appreciable fluctuations in the tonic component across time (SI
Appendix, Fig. S1). Across the 11 subjects, the total number of
pulses in the 1-h time window ranged between 97 and 348, in-
cluding the distantly spaced smaller pulses (SI Appendix, Fig. S2).

Table 2. Results: AIC for all models

Subject
Prominence
threshold

Number of
pulses extracted

GIG diffusion
AIC

GIG nondiffusion
AIC

Lognormal
AIC

Gamma
AIC

Exponential
AIC

S01 0.005 242 1,700 1,736 1,698 1,783 1,781
S02 0.005 122 989 1,021 981 1,050 1,049
S03 0.005 112 916 963 896 995 996
S04 0.005 223 1,670 1,647 1,645 1,634 1,679
S05 0.023 348 2,333 2,290 2,286 2,262 2,337
S06 0.004 97 832.6 870 832.8 889 900
S07 0.005 182 1,430 1,417 1,406 1,407 1,458
S08 0.005 344 2,179 2,184 2,183 2,214 2,299
S09 0.01 299 2,102 2,060 2,034 2,041 2,084
S10 0.0025 111 976 973 974 977 998
S11 0.005 125 1,082 1,080 1,070 1,089 1,093

The best performing model per subject is in bold. The final prominence threshold used and number of pulses extracted is also indicated for each subject.
GIG, generalized inverse Gaussian.
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The final prominence thresholds used ranged between 0.0025
and 0.023.

Findings from Statistical Model Comparison. For all 11 subjects, the
optimal generalized inverse Gaussian diffusion model was an
inverse Gaussian, indicated by λ=−0.5 in Table 1. This inverse
Gaussian was always within the significance cutoff according to
KS distance, indicating that it provides an accurate description of
the data and supporting our hypothesis that the pulsatile sweat
release events of EDA can be modeled as an integrate-and-fire
process. When allowing for deviations from the inverse Gauss-
ian, for 9 of the 11 subjects, one or more of the lognormal,
gamma, or generalized inverse Gaussian nondiffusion models
was able to improve statistically on the fit of the inverse Gaussian
(Tables 2 and 3; Fig. 2; and SI Appendix, Figs. S3–S7). The ex-
ponential was never a better fit than the inverse Gaussian, and
was only within the significance cutoff for 4 of the 11 subjects.
This suggests that for the majority of subjects, the exponential
model did not offer an accurate description of the data.
Both AIC and KS distance were in agreement for the best fit

models for the data of 8 of the 11 subjects. This corresponded to
1 generalized inverse Gaussian diffusion model (S08), 1 gener-
alized inverse Gaussian nondiffusion model (S10), 4 lognormal
(S02, S03, S09, and S11), and 2 gamma (S04 and S05) models.
For S01 and S06, the AICs and KS distances suggested different
best fit distributions between inverse Gaussian and lognormal.
For S07, they identified different best fit distributions between
lognormal and gamma. It is reasonable to expect that the results
from AIC and from KS distance will not match exactly since

different metrics are intended to capture different aspects of
model fits. However, the fact that they agree across the majority
of subjects reinforces that there is specific statistical structure in
the data that can be captured with a parsimonious model.
The second phase of comparing the models was analyzing the

tail behavior (Table 4) using the settling rates estimated for each
of the five models for all subjects. Across all 11 subjects, the
lognormal always had the heaviest tail since it is commonly
classified as a heavy-tailed distribution. The generalized inverse
Gaussian integrate-and-fire model had the next heaviest tail,
indicated by the next smallest settling rate. The lognormal was
the only other class of models besides the generalized inverse
Gaussian diffusion models that was within the significance cutoff
for all subjects. This suggests that deviations from the inverse
Gaussian tended toward heavier tails that were best captured by
the lognormal.
Among the remaining models, the generalized inverse Gaussian

non–integrate-and-fire models always had lighter tails than the
integrate-and-fire models. The tails of the gamma were even lighter.
Omitting the exponential, since it fit poorly in the majority of cases,
the remaining models—lognormal, generalized inverse Gaussian
(diffusion and nondiffusion), and gamma—together provide a sys-
tematic framework to: 1) evaluate the presence of inverse Gaussian
structure in EDA using diffusion models; and 2) enhance statistical
descriptions using models capable of capturing a range of tail
behavior properties.
Among the three subjects for whom the AIC and KS distance

disagreed on the best fit model (subjects S01, S06, and S07),
there was only one case (S07) in which this disagreement

Table 3. Results: KS distance for all models

Subject
Significance

cutoff
GIG diffusion KS

distance
GIG nondiffusion KS

distance
Lognormal KS

distance
Gamma KS
distance

Exponential KS
distance

S01 0.087 0.057* 0.0790* 0.065* 0.0791* 0.085*
S02 0.123 0.073* 0.111* 0.040* 0.119* 0.120*
S03 0.128 0.121* 0.156 0.054* 0.159 0.169
S04 0.091 0.077* 0.050* 0.043* 0.023* 0.102
S05 0.073 0.067* 0.053* 0.031* 0.030* 0.122
S06 0.138 0.071* 0.136* 0.050* 0.134* 0.177
S07 0.101 0.088* 0.074* 0.057* 0.048* 0.146
S08 0.073 0.025* 0.0295* 0.0301* 0.047* 0.120
S09 0.079 0.078* 0.0512* 0.028* 0.0511* 0.100
S10 0.129 0.050* 0.032* 0.042* 0.055* 0.109*
S11 0.122 0.052* 0.032* 0.028* 0.056* 0.077*

The best performing model per subject is in bold, and all models under significance cutoff are marked with an asterisk. The significance cutoff was
computed based on the number of pulses extracted. GIG, generalized inverse Gaussian.

Fig. 2. KS plots of interpulse interval data for subjects S01 and S02 with 95% confidence bounds. All five models are shown against each other, with KS
distances for each. A smaller KS distance, along with remaining fully within the 95% confidence bounds, indicates a better fit. The KS distances are ordered in
each case from best to worst fit model. LogN, lognormal; GIG, generalized inverse Gaussian; Exp, exponential.
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predicted very different tail behavior. In this case, the AIC and
KS distance were divided between the lognormal and the gamma
as the best model, one of which predicted a very heavy tail while
the other predicted a very light tail. However, the tail of the
interpulse interval distribution may have been relatively under-
represented for this subject, so the fit was primarily based on the
shape near the mode, which both the lognormal and gamma
distributions fit well. With a data collection period longer than 1
h, we would most certainly arrive at a more accurate description
of the tail behavior.

Discussion
In this study, we used EDA data collected from 11 healthy vol-
unteers at rest to test our hypothesis that EDA contains highly
regular statistical structure that is consistent with integrate-and-fire
physiology that describes sweat production and release. To do
that, we fit probability models to the EDA time series and
quantified the goodness of fit using AIC and KS distance. We
also assessed tail behavior by computing the settling rates. Our
findings show that for each of the 11 data series, the model fits
and tail behavior were consistent with integrate-and-fire sweat
gland physiology. There was also room for statistical improve-
ments to capture deviations due to EDA data reflecting the si-
multaneous activity of many sweat glands.
The physiology of sweat gland activity predicts that the inter-

pulse intervals for sweat gland pulses should obey an inverse
Gaussian distribution. This is an elementary model for processes
where there is a build-up of a continuous variable to a threshold.
Crossing the threshold leads to an observed event. Here, the
build-up is the accumulation of sweat in the gland in response to
sympathetic stimulation. The observed event is the GSR pulse
measured as EDA. Our results show that the EDA data are
consistent with an inverse Gaussian model for all subjects (Table 3),
and the inverse Gaussian is also the optimal integrate-and-fire
probability model (λ = −0.5) from the entire class of general-
ized inverse Gaussian integrate-and-fire models fit to these
data (Table 1).
We refined our hypothesis further by considering that mea-

sured EDA is the aggregation of data from hundreds of sweat
glands. This predicts that the interpulse intervals could likely
follow a mixture of inverse Gaussian models. This mixture could
deviate from a single inverse Gaussian in tail behavior, which can
be captured by other non–integrate-and-fire models. Lighter tails
were modeled as gamma or generalized inverse Gaussian non–
integrate-and-fire models, whereas heavier tails were modeled as
lognormal (Table 3). More of the data are consistent with the
heavier tail lognormal distribution, suggesting more frequent

longer interpulse intervals across sweat glands than would be
predicted by a homogeneous inverse Gaussian model. Further-
more, we did not observe any multimodal structure in the EDA
suggesting a degree of coherent behavior among the sweat glands
in the recording area. The non–integrate-and-fire models pro-
vide a systematic framework to make individualized improve-
ments in the statistical fits. However, the fact remains that there
is an inverse Gaussian model that is an accurate statistical de-
scription of the data for each subject. This reinforces the idea
that the statistical structure in the data are fundamentally guided
by the physiology of sweat gland activity which can be approxi-
mated well as an elementary integrate-and-fire process which we
took to be a Gaussian random walk with drift diffusion.
Our results link directly the physiology of sweat glands and the

statistical structure of the EDA data collected at the skin surface.
Current detailed signal processing methods for EDA analysis
require significant computational complexity (6–10). However,
looking to the physiology provided a principled framework by
which to drastically reduce model dimensionality—all of our
models had only one, two, or three parameters—and increase
the accuracy of the data description. This result has implications
for understanding and tracking the sympathetic activity in the
autonomic nervous system in a more informed way.
Several important extensions are possible in future work. We

will study EDA pulse amplitudes along with interpulse intervals, by
taking into account that both arise from the same integrate-and-fire
process. Having established a natural point process structure in
the EDA time series under approximately stable conditions, we
can now study their dynamics over longer time periods, by ap-
plying history-dependent inverse Gaussian models like those de-
veloped for heart rate variability (31–35). These more detailed
models could include other relevant covariates such as skin and
environmental temperature. We will also study EDA in other
contexts, such as under different emotional conditions, during
sleep, in response to painful stimuli, and under general anesthesia.
Our findings provide a principled, physiologically based approach
for extending EDA analyses to these more complex and important
applications.

Data Availability. Anonymized electrodermal activity time series
and code for analysis have been deposited in PhysioNet (https://
physionet.org/) (19).
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Table 4. Settling rates for all distributions

GIG diffusion GIG nondiffusion Lognormal Gamma Exp

Density 0. 5 ψχ-1
� � λ=ð 2ÞðKλðψχÞ1=2Þ-1xλ�1exp �0. 5 ψx þ χx-1

� �� �
2πx2σ2
� �-1=2

exp -0. 5σ-2 ln x-μð Þ2
� �

βαðΓ αð ÞÞ-1xα-1e-βx λe�λx

Settling rate SRfð Þ ψ
2 0 β λ

Tail classification Medium Heavy Medium Medium
S01 0.0214 0.0553 0 0.071 0.068
S02 0.0119 0.0299 0 0.035 0.036
S03 0.0089 0.0244 0 0.026 0.031
S04 0.0328 0.0639 0 0.120 0.062
S05 0.0487 0.0957 0 0.184 0.094
S06 0.0038 0.0164 0 0.017 0.025
S07 0.0323 0.0566 0 0.107 0.049
S08 0.0725 0.1203 0 0.198 0.096
S09 0.0350 0.0764 0 0.142 0.083
S10 0.0185 0.0332 0 0.056 0.029
S11 0.0120 0.0288 0 0.044 0.033

A lower settling rate indicates a heavier tail. GIG, generalized inverse Gaussian; Exp, exponential.
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